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ON OBSERVER PROBLEMS FOR SYSTEMS
GOVERNED BY PARTIAL DIFFERENTIAL EQUATIONS

J.S. Barast and A. Bensoussant

tUniversity of Maryland

ttUniversity Paris Dauphine
and

INRIA

1. Introduction

The problem of observers has been introduced in the control litera-
ture bvya2 Luenberger ,1t-51- Let us consider a dynamic system which is
deterministic, but whose inital state is unknown. An observer is a model

4 which mimics the behavior of the physical system, and in particular its
state becomes closer and closer as time evolves to the state of the physi-
cal system. There is a great deal of freedom in such a design and it is
important to investigate various kinds of observers.

Since, after all, the observer prblem presents analogies with the filter-
in- problem (estimating the state of a stochastic dynamic system), although
there are no stochastic disturbances, it is natural to exploit the analogy.
This idea has been used by J.S. Baras and P.S. Krishnaprasad 14] and leads
to an observer which is different from Luenberger's observer. It presents
several advantages. In particular, it is obtained in a constructive way and it
ha, robustness properties. AaoIsion For

From the very definition it applies identically when there are distur-
bances, whereas the Luenberger observer is strictly limited to the determin- NTIS GRAI

istic case and is not obtained in a constructive way. Also it may apply to DTIC TAB 0
more general cases, in the sense that when the Luenberger observer exists, Unannounced [:

the observer arising from the Kalman filter theory exists as well.
In this article we consider dynamic systems whose evolution is governed

by a parabolic partial differential equation, or more generally a differential By
operational equation in the sense of I.L. Lions 1121 Distribution/

The Luenberger theory has been extended to infinite dimensional sys- Availability Codes
tens (see in particular M.J. Chapman and A.J. Pritchard 161, A. Ichikawa Avail
and A.J. Pritchard 1101). We explore here the observer based upon Kalman IDis Special

filter theory.I
Let us discuss here an example to present the main reults of the paper.

Let 12 be a smooth domain of R". Consider the P.D.E. p

*Partial Sponsorship from: AFOSR-870073, NSF ECS-8219123,
NSF XNT-84-93793. 87 . - 346
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-tAy - 0 in 12,

° av r", 0,(1.1)

y(x, o) - y,(x) E H - L 2(2),

where F = a1 denotes the boundary of d2. The state y0 is unknown. If in-
stead of (1.1) we were to have

a- AY+, A = 0, A >0,

= 0,

y(x, o) - y0

then the system is stable and y(x, T) -4 0 as T I. . in other words, whatever
YO is, the state comes closer and closer to 0 as T evolves and thus becomes
1 "more and more known." An observer could be simply the model (1.2) itself
with an arbitrary value of y o, independent of the available observation.

4.. Such a stability property is not present in the model (1.1). Let us
assume that we observe

Z Y (1.1)'

i.e., the value of the state on the boundary.
An observer in the spirit of Luenberger would be the following model

am A- 0 in!D,at-
elm.v " (z -m) r ,

(1.3)

m(x, o) . W),

where m. is arbitrary. The error 77 - y - m appears as the solution of

ORAr7 - 0 in!R,dt - '

y r -(.4)

4 7(x, o) - ?Io(x) - yo - M.

.4. Multiplying (4) by 77 integrating over D yields

f *7 d .fIU)PdX +. f;2d- 0.
a a r

But

f' W;712 dX + f ei dF ! 6f 72 dX, f> 0
a7 r a24,0

4.
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and thus

f 172(x, t dx < Ce- 2 l',

which proves the exponential decay of the error.
The theory developed in this paper leads to the following observer:

_d m - f P(x, ,)((,)-m(,))d-* -- m - -

am Ir-0, I = (1.5)

, m(x, a) - to(W
S where p(x, , t) appears as the solution of a Riccati equation, connected

'". to a filtering problem, or by duality to a control problem. We study the type
of control problems which may be introduced in order to derive exponen-
tial decay for the error.

2. Setting of the Problem

2.) Notation and Assumptions

IS Let V, H be two separable real Hilben spaces, such that identifying H
and its dual H', one has

V c H - H' c V (2.1)

each space being dense in the next one with continuous injection.
I We denote by (( , )) 11 II and ( , ) I I the scalar product and norm in

V, H, respectively. For another Hilbert space X we shall use the notation
( )x and I Ix. We denote by <, > the duality V, V.

Let A(t) be a family of operators such that

A(-) c L" (o, .- ; V; V'))

.. ,.<A (t), O> + ,A1l12  ! alt 11 11 V OE V,(.2

i->0, A30, Vt.4O,,

We consider a dynamic system whose evolution is governed by the dif-
ferential operational equations (see I.L. Lions 1121)

dt + A(t)y f
(2.3)

y(o) -y.

t More generally, <, >X will represent the duality between a Hilbert space

X ands its dual X' and Ax the canonical isomorphism between X and X'.

0 "4" "",;"-' "-3" "-" ""'"' ' "" ' -"-",",
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where
f c 4,(o, -; V') given, (2.4)

y,, e H, y0 unknown. (2.5)

It is well known that for any y0 , (2.3) defines the state y(.) in the sense

y E 9Loc(O,', d E L40 (0, -; V) . (2.6)

We perform an observation on the state y(-) as follows:

z() C(Oy(O, (2.7)

where Q'C() E (0, -; (V; F)) ,

F being a given Hilbert space.

2.2 Definition of an Observer

An observer is a function m(t) measurable with values in H, whose
value can be computed at each time t in terms of the known data (in parti-
cular the observation z(.)) and such that the error

e(t) = y(t) - m(t)

satisfies
le(t) - 0 as t-4o.

Therefore m(t) will reasonably estimate the state of the system at time
t (at r - 0 this estimate may be very bad, but it improves more and more as
t -- -; it is of course nice to get an exponential decay for Ie(t)j).

This problem has been extensively studied in the finite dimensional
case, starting with the seminal work of D. Luenberger 115]. For infinite
dimensional systems, the Luenberger observer has been exended in a natural
fashion, however the research has mostly concentrated on the design of com-
pensation (i.e., use the possibility of controlling the system, so that the
global system made of the system itself and of the observer is stable).t
While the control is generally present in such contexts, it is worthwhile to

* separate the observer problem from the compensation problem, and consi-
der cases similar to (2.3), (2.7) when there is no control. In particular,

'. nothing can be done to stabilize the system itself.
We shall thus prefer to introduce observers constructed in a differentI way, following ideas introduced by J.S. Baras and P.S. Krishnaprasad [4],

which consist in artificially randomizing the problem and using Kalman fil-
ter theory for infinite dimensional systems.

t For details in this direction see MJ. Chapman and AJ. Pritchard [6],
A. Ichikawa and AJ. Pritchard 110].

0
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2.3 A Randomizing System

The theory of linear stochastic infinite dimensional systems has attracted
a considerable interest in the literature. One of the main objectives has been
to develop a rigorous theory of the Kalman filter applicable to distributed
parameter systems. Among the main contributions one can refer to A.V.
Balakrishnan [1], 12], A. Bensoussan 15], R.F. Curtain 18], R.F. Curtain
and A.]. Pritchard 191.

Let us describe briefly what we shall need for our purpose. Let (12, Y, P)
be a probability space equipped with a filtration Y', satisfying the usual con-
ditions.

Let E be a Hilbert space, a generalized E Wiener space is a stochastic
process indexed by an element e.(-) : /.o(O, -; E'), denoted by pue*(W)
satisfying

:e p is a Y" Wiener, V e. , (2.8)

Ep" /" = o < e. (A),'A-te.(A)> d) (2.9)
0

the map e. ./ * is linear. (2.10)

b5,, We assume that such a generalized E Wiener process exists. Similarly

we shall assume the existence of a generalized F Wiener process v and we
suppose that

., and v, are independent . (2.11)

Let G(-) E L(o, -; Z(E; V')) and M(.) e L"(o, -; X(F; F)), we shall
Mf

-. consider the stochastic proceses ,U, and vf indexed respectively by
v(.) c 1goc(o, ; 1') and f*(.) E Lic(o, -; F). They are clearly indepen-
dent Y ' processes and one has

Ep p %  <GAjI G*v(A), v2(A)> d . (2.12)

Finally, let there be a family of random variables indexed by h c H denoted

0 by e such that

V h, C is a Gaussian with mean 0, and
'E (P. 7h, P), V(H; 10(2.13)

symmetric, semipositive definite.

"2 is independent from p/" and v 1 (2.14)

Let Ft, s), t > s be the Green's operator corresponding to A(t), i.e.,

Ftr, s) E Y(H; H) and a(t) - 11t. s)h (2.15)

is the solution of

da' - t - 0 , 1 > s . a ( s ) -h .
.. d
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For simplicity we write F(1) - J1t, o).
A stochastic linear system is a process y, indexed by h e H, defined by

the formula

Y h) + + , (2.16)

where Y(t) is the solution of

t+ A(t)y - f(t), Y(o) , (217
(2.17)

y. given in H.

We are to be careful in the interpretation of jt '  . In fact,
consider s -+ G*(s)r*(t, s)h for s < t; it coincides with G*(s)3(s), where ,?
is the solution of

A* (s, 0 0(t) hi ~as + " '" '

and /3(s)E eL(o,tV), hence s -4G*(s)F-*(t,s)h = el.(s) belongs to L2(o,t; E,).
Since ut' depends only on the restriction of e. on (o, t), the quantity 1u "e
is well defined for any t.

We define the observation at time Tas follows. Let.f. e .qoc(o/'V) 9)
and ;7 be the solution of

-dt'

(2.18),, 7(t) - 0.
Then one sets

f T <f.(t), C(t)y(t)> dt + P(o) 1 + ,M'.
JUJ T +VT (2.19)

4 o

2.4 Kalman Filter

0 This problem can be stated as follows. Let

TZ 1 (/,f. L.2(o, T; F')).
Find
FA n? - ELA I ZT J. (2.20)

Without redoing the theory. for which we refer to A. Bensoussan 151, we
shall only recall that it can be obtained by solving a deterministic control
problem related to maxim.n lkelihood. We assume that M is invertible as
well as P. and set

R - M*-IAFM - ' e (F, F). (2.21)

We introduce the control problem

04
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dv + A f.+ Ge, e(-) e L2 (o, T; E) ,
(2.22)

yXO) - Y

in which and e(-) sic the decision variables.
We are interested in minimizing the following cost:

J(I, e(-)) - IL<A~e, e> + <R(- C)-), - Gy>1 dt
0 (2.23)

+ (P-0 I '

where on the right side of (2.23) the function ()is given in L-2(o, T; F).
DefineI

=, GA - G (224

D2 - C*R C , (.4

and consider the pair ), p(-) defined by the system of coupled equations

dt

d2i A(t)p - D2(t)y, ..C*R;,

Y(O) Y"- P"p(o)
(2.25)

p(T) =0.

Then the optimal control is given by

i =t -AE1 G*(t)p(t) (.6

=-P0 p(o).

The decoupling theory leads to the Riccati equation (written formally)

dP + .AP +PA* +PD 2 P -D,
(2.27)

P(O) - P

and the linear equation

dr-*Ar f + PC R( -Cr),
(2.28)

it can be proven that if ~.e L2(o, T; F') is defined by

J 0 <. ;> d - (r(T)- (T), h), V;,

R i I'

&Ma OR231 A



then the quantity (2.20) is given by

P- -zO + U5(T), h) .
T

3. Study of the Operator P(T)

3.1 Definition of P(T)

Consider the coupled system

d+ -s- .s D&3 0,

dt

ft(T) h A.(31

Then we set
P(T)h - -6(T) .(3.2)

The system (3.1) is related to the following control problem:

+ A(t)a = Ge,

am(o - (3.3)

JT(,e(j)) 0. {le' + <D2 aa>I dr) + (h, a(T)) .

We deduce easily that

-(P(T)h, h) -- inf JT( , e(-)) (3.4)

We can also characterize this quantity in a different way. Consider the con-
trol problem

dt (3.5)

,6(T) - A,

and the cost

JQ.)-(PPl(o)-,Ao)) + jCR-'.,O.> dt + f <Dlfl, 16> di .
o 0

Then one has also

(P(T)A, h) - inf JT(O.). (3.6)
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3.2 Detectability and Stabilizability

DEFINITION 3.1. We shall say that the pair A(-), C() is detectable if V h,
3 O., such that

T T

0. IFd+ dt < K h  (3.7)
0 0

independent of T, where /'T represents the solution of (3.5) corresponding
to 01... 0

In the stationary case, i.e., A, C independent of time, it is sufficienL
to assume the following

DEFINITION 3.2. We say A*, C* is stabilizable if V h, 3 0! E L2(o, *c; F')
such that the solution 2A of

* dt + =C '

y"(o) = h

satisfies rA E L2 (o, 0; H). 0]

PROPOSITION 3.1. In the stationary case, if A*, C* is stabilizable, then A,
C is detectable.

'", Proof. Define T A(t - t)(-t) ,

Then clearly /' (t) is the solution of (2.5) corresponding to 0. (r), and

T rTl .dt f-Th12dt f 2f , .,0 , IF 0 ,< f 0,:1 d,
o 0 0T T
f d f 2d < Ir1

0 0 0

and the desired property follows. 0

THFOREM 3.1. Assume that A(-), C(') is detectable, then

6 IP(T) (j,.,j) < p. (3.8)

.r Proof. It follows from (3.5) that
T T

7- 1'mn,12 f <A*#. 6> - fII2 + <6,c . > d,

* 0

Hence

T T 7*O,8 N 2 d, j r :> i A5d1 1 ++ <,, C*o.> d, + A f W;,: d,
*0 0 0
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and the detectability condition implies immediately

eT.Aj :5 K,; f , K,;
0

Therefore from the definition (3.6) one has

This and the fact that P(T) is symmetric positive semidefinite implies the
desired result. 0J

1 THEOREM 3.2. If there exists a family Fj- E L(o, -; Y4F; V')) such that

<(A (z) + F( t)C(i)~ 2: a O',l~ 2  (3.9) -

then the pair A(.), Q-) is detectable.

Proof. Indeed pick the feedback

The corresponding trajectory is given by

49 + (A* + C**)i? = 0, /3(T) =lh
dt

and thus II,~~ is bounded by a constant independent of T. The de-
sired result follows. 0

3.3 Invertibility

if We turn now to the question of invertibility of the operator P(T). We
shall need another property. Consider the dynamic system

da
+Act Ge,

(3.10)

N (0)

DEFINJTION 3.3. We shall say that the pair A(-, G(-) is controllable if

V h, 3 eT.A and T'hsuch that

Th2 fT Tj 2  T T&r f
.S~~S~~z + f <,~1  LA (.1

V. 0

and
&7,kTr) - h, (3.12)

where aT.I designates the solution of (3.10) corresponding T h and e7 .

The constant LA is independent of T. 0

..............
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We can give an example of controllability (probably the only one really
implementable).

PROPOSITION 3.2. Assume that

Di is invertible . (3.13)

Then the pair A(-), G(.) is controllable.

Proof Let

We set=~ a2(°:Z* ir tOh E L.2(o,; V') h(o) = h.

., We set
CrT, o'h (t) Oh €(T -t) , = ar,(o) = Oh(T)

and

eTh(1) -A- G *d(-)D(i) - - + A(t)TF h (t)• (3.14)

Then

= IA(Tf)P = 2 T(Oh, d) dt + Ih ;2

0

< +d,

T T T <

. I aT.- d O J, I(T-, c,2  = O t)12 c, < i 10h! 2 d.
0 0 0 0

and

T rjjdaTA h .d +12
J eT(t)1 2 dt < C[+f 11I aT.h (t) 112 dt

00 0

- cv.I 1Idt + fl IIhl2 dt

Finally from (3.4) we obtain
doT ,A

G(t)er'(t) "= dt + A(t)atT'h(t)

S. and
aT.h(T) - h.

The desired result has been established. 0

REMARK t. As is well known (cf. R. Lattes and J.L. Lions 1l1)), we cannot
solve a priori the backward problem

d+ A - Ge, a(T) h . (3.15)
'F.t

Ok
L '. .: ', '; ,~~' _' ".......,,, ,. -.' -_' ',, ,,, . .. - . - .. .. , .. .., ,...... , ...,,
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The situation is different from ordinary differential equations. The pro-
bleni (3.15) (for given e) is a priori ill posed. We refer to J.L. Lions 114]
for a detailed study of these ill posed problems in the context of control
theory. 0

We shall now consider control problems similar to those described in
Section 3.1. The response is described by

d+A = Ge,
dt

(3.16)
a(o) = 4.

We impose the constraint
a(T) =h (3.17)

and minimize the cost (recall that P0 is invertible (cf. Section 2.4))

4(4, = e (-,) ) Jie,. + <D 2a, a>] d,. (3.18)
0

Note that (3.17) must be considered as a constraint and not an initial
condition.

THEOREM, 3.3. Assume that the pair A(-), G(') is controllable. Then the con-
trol problem (3.16), (3.17), (3.18) has a unique solution. There exists a
unique pair U, ,? such that

da1
di AF + D L9= 0,

d" A3 D,= o=dt -= '

*1• -.'(o) = -PoA(O)
(3.19)

(T) = h,

* and the optimal ;ontrol is

t) -AE I G* (10(t),~(3.20)

- -P,(o).

Proof We follow the technique introduced by J.L. Lions 1131 to deal with "

this type of ill posed problem. We shall penalize the constraint (3.17).

a. Existence and Uniqueness of the Optimal Control -- (.,

Let 1, - le(-), ?la(T) - h). By the controllability assumption rA is
• not empty. It is a convex closed subset of the Hilben space L2(o,T; E) x H

and the functional (3.18) is a coercive quadratic functional. Hence the exis-

tence and uniqueness of the optimal control i('), .

04
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b. Necessary and Sufficient Conditions of Optimality

. Consider r. (i.e., r h with h - 0). it is obviously a closed subvector
space of L2 (o,T; E) x H. Noting that F(-) + Ae(.), ? + A? V e(-), ? be-
longing to r., we deduce easily from the relation

_( + 9. F(.) + Ae(.)) 2 KT(, F(.))

that the following condition must hold
'# T T/

(Po ') + f <AEF, e> dt + f<D 2ZY, a> di = 0, (3.21)
0 0

V , e() in E,

a being the corresponding solution of (3.16),
and

ff designates the optimal trajectory.

This condition is sufficient, since V , F(-) F- E,, - . '() - _( E,.
Hence,'',-' hT T

":: and KT( ' e(')) I= (p) (,(+ f <AE'T, F > 1d t + f <DZY. c>di

and A A(')) >*AT

c. Adjoint System. Uniqueness

Assume that we have a solution of (3.19). Then define F(.) and . by
(3.20). Let us show that it is optimal. Clearly Z is the trajectory corre-
sponding to the control F(-), ? and it is admissible (belongs to /h). It is
easy to check that it satisfies (3.21). It is thus the optimal control and
therefore (.), and U(') are uniquely defined. It is also the case of 8(io)

' and -(diJtd) + A*8. This implies that / is unique as well.

d. Adjoint System. Existence

It remains to prove the existence of the pair U, I? solution of (3.19).

The penalty technique is now used. Consider the functional

K,'tr, e(-)) = K( , e(.)) + L 10(T) - hil. (3.22)

., Then the control problem (3.16), (3.22) becomes classical, and there exists
a pair at, fl solution of

,a
I

04
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dr + Aac + Dfl8" 0

% !!&_ + A*,6 D2a - 0

" a.(o) - -P,3(o) ((3.23)
fit(T) " -(= (T )

and the optimal control is

e, - -A E IG *, 4 . -Po3(o).

Now from

KA.c(, e(-)) : j( :T. .eT.A) < Ch

we deduce

'f df T<D 2a, ac> dt < C,
0 0 (3.24)

l- a,(T) -h I' < Ch,

and since a, is the trajectory corresponding to e, and : c we have

fT Id~ 2T
IbIdi + Ia,, 112 dt < C,T (3.25)

0 0

(this last constant may depend on T). Now for any 4, e(.) we have (neces-
sary condition of optimality for the problem (3.16), (3.22)),

(PO I , n + fT(AECe, e> dt + f<D2ac, a> dt
0 0 (3.26)

+ 7 (a,(T)-h, a(T)) - 0.

Let us pick 4 - e - eT A where k is arbitrary in H. We deduce
from (3.26) and the estimates (3.24), (3.25), that

(ae(T) k)I - Ck

since in this context h, T are fixed. From the Banach-Steinhaus theorem it
follows that (ac(T) - h)ltl <- CA,. Therefore, also using (3.23), one has

J I f g6, 12 dt < C .r (3.27)

With the estimates (3.24), (3.25), (3.27) we can extract a subsequence ar,
,8,, converging weakly to (dO/ad), (d/a/dt), in .2(o, T; V). We obtain easily

I that U, 4 is a solution of (3.19), the proof has been completed. 0

e% I6.
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THEOREM 3.4. Under the assumptions of Theorem 3.3 one has

3(T) = -Q(T)h, (3.28)

where Q(T) e X(H; H) symmetric positive semidefinite. Morever,

V(T)6j(H;H) - C. (3.29)

Proof Consider (3.23). the quantities ar, ?,tc are linear continuous functiors r
of h. Hence we can write

N /3(T) - -a9jj)h .(3.30)

where it is easily seen that Qc(T) e X(H; H) symmetric, positive semide-
finite. Moreover, one easily computes

inf AK4'(4, e(.)) = (Qc(T)h, h). (3.31)

-i, Since the left hand side increases as c decreases, it follows that
Q((T) is an increasing family of symmetric positive semidefinite operators
in Z(H; H).ButBut .(4, e()) = (,e()) V e() in r,

Therefore
(Q,.(T)h, h) 5 inf 'A 7( , e('))

f ( ) e r , , ( 3 .3 2 )
<- ( '., TA) -< CA

independent of T and c. Necessarily Q,(T) T Q(T) E K(H; H) positive
semidefinite and

JQ(T) (H;H) 5 C (3.33)

independent of T. But

inf JA t(, e()) -4 inf KT.(, e(.)) (3.34)
* 0"'.(.) .e(.) E rA

'*.'.-Indeed,

'" ""'t d: .. f + -lo;(T,-:-

5 (Pm"f,'. + f , 2d + <Dtr, r>d

0VA

, 5ir ** 'c If T' S
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This implies the strong convergence of 4, eC, a., to ?, i, ff, and also that
(l/c)a,(T) - h 2 -4 0.t Therefore (3.34) is demonstrated and thus

in f ( e(-)) - (Q(T)h, h). (3.35),e(')e rj

Moreover, since &3e(T) -4.8(T) in H weakly, we deduce the property (3.28),
too. 0

Ri: ARK 3.2. Before it was used in treating ill posed problems, the penalty
technique (which goes back to Courant 171), has been widely used as an
approximation technique for the control of systems governed by partial
differential equations, see A.V. Balakrishnan 13], J.L. Lions [13]. I

We can nob compare Q(T) and P(T).

THEOREM 3.5. Assume that A(-), C(-) is detectable and A(-), G(') is control-
able. Then one has

- Q(T)P(T) - P(T)Q(T) - 1, (3.36)

"'" Q(T) (jjjj) <5 q JP(T) .(HJO, <5 p (3.37)

%-here p, q are constants independent of T.

Proof The property (3.37) has already been proven. The property (3.36)
follows by comparing (3.1), (3.2) to (3.19), (3.28). Indeed in (3.19) set

,S,; h - -P(T)h. Then we have ZF - e and fl- (by uniqueness) and

/3(T) - h - -Q(T)(-P(T)h) - Q(T)P(T)h

A similar proof is made to prove that PQ - 1. 0

4. Observer Based Upon Kalman Filter

,g 4. 1 The Model

Motivated by the form of the Kalman filter see (3.28)), we shall de-
fine the observer by the solution of the equation

dm

W4 dt + Am .f PC*R(z- Cm), (4.1)

Mr(o) mo--
where m. is arbitrary and r is the observation corresponding to the state (2.3).

The writing (4.1) is somewhat formal, since P is not defined on V. In
fact, we shall give a meaning to

y-m - 17, (4.2)

t This follows also directly from the fact that Kar(T)-h)/t' is bounded in r

04i
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where 7 appears as the solution of

dr + (A+ PD2 )) - 0,dt (4.3)

17(o) - Y. - mo .

The solution it) of (4.3) is defined by duality. Indeed, considering (3.1)
we see that the equation

dt + (AD 2 P? , 0.
(4.4)

8T (T) - h,

ha, a solution in the functional space

Wp(o, T) -- L '(oT; V), ! c L2(oT; V), Pe0 L2(oT; to}. (4.5)

Then the value ;7(T) is defined by

(7(T), h) - (fi (o), y.- in.), V h, (4.6)

which defines 7(T) uniquely in H.
Our problem amounts to studying the behavior of 77(T) as T-- 0.

4.2 Estimates

We shall prove the following (main) result.

THEOREMI 4.1. Assume A(-), C() detectable, and

<Dj(t)v. v> k~v], V v F V. 1 (4.7)

Then one has

L '" Iy(t) - m(t) S CLyo - m,e - 7 ' .  y>0. (4.8)

Proof Considering the system (3.1) and the relation (4.6), we know that

(P(T)h, h) - (P, (o). flT(o)) +f D 46' (s).f (s)> &

4.
S., T

J(DP/Ts) T
f <DP () P/I (s)> ds ,

where we have writtenf ()instead of/ to emphasize the dependence on T.
Recall that pT0 - .

I Of course if <D(t)v, v> g kNv0l, (4.7) holds as well as the controllabi-
lity propery (see Proposition 3.2). But (4.7) is weaker.

lZt Ofpet (seer %Jul l



In a similar manner we can write the relation

(P(T)h, h) - (PQt)pQT~),, pQ)) + fj <DdfT(5), fli (s)> ds

+ fJ <D2Pfi(s), P/I (s)> ds,(.9

which holds for any I e (o, T). Therefore it follows that

d t + <<DDIQ(A (),TQ),()

* and from (4.7)

d (p(4'(O.' fT (1)) 2! ke8(t)2 .( ~

Note that, from Theorem 3.1 one has

Therefore (4.10) implies

d 1/2 T k 12 T

Hence

(P0 /?6T(o), gT (o)) :5 (P(T)h, h)e-( /p)T < p e Jh' . 4.11

Therefore, if

we have

From (4.6) it follows that

177(TI ~ m.I I~I (A/2p)T

4.3 Example

Let us turn to the example considered in the introduction. We shall take

Hf - 0( 2 ), V H- (RQ) ,

E MH, Gml. hence D -I,

F - 13(1-), C r trace operator .

LIh I'
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The system of optimality (3.1) looks as follows:

_M h

at r

Lt(o) . -poAo),
i (4.12)

A(T)- h.

The assumptions are satisfied. Indeed, the detectability condition is
satisfied, since using the stationarity we can apply Proposition 3.1. and we
have seen that the system

a Ay- 0

at I  ,r -i 0 ,

7(0) h,

has a solution in 2( V).
We can check. at least formally, that the operator P(t) will satisfy theequation

(-4 ' +(-Pz, 4) + 'a )4. f PzP- dr

- (z,') V' z, 'in H'. (4.13)

Representing P(t) by a kernel

P(t)h(x) f P( . , ) ('g

* yields the equation for the kernel

"p.p

a- - P - A? P f P(., r7. ) P(7, e. t) dr - 16(x-), (414)
r

with the boundary conditions

a-, i t) ,- 0 ', ,

' P(4.15)

P(z, t) - Po(z, x) (kernel of P.).

The observer has been defined in (1.5) (the writing is formal).
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REMARK 4.1. It is important to notice that the assumption (4.7) does not
imply controllability (the situation is not similar to that of ordinary differ-
ential equations).

REMAR 4.2. It is fair to mention that (1.5) leads to more complex calcu-
lation than (1.3), but it is less affected by disturbances. Moreover, it re-
spects the boundary condition of the initial system.
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